

Introduction to the Bourne Again
SHell (bash)

Overview

● Bash basics, variables, looping and redirection.

● grep (text searching)

● awk (text processing)

● sed (text processing/stream editor)

● bc (CLI calculator)

● Shell scripts

● A real life example.

● Other languages of interest

Some required files

wget http://ceclnx01.cec.miamioh.edu/~taylors6/acm_bash_demo.tar.xz

tar xf acm_bash_demo.tar.xz

cd acm_bash_demo

bash

● Let's first make sure everyone is using bash.

echo $SHELL

/bin/bash

● What happened here?

– The bash built-in command echo takes input from it's argument
list, and prints it to standard-out.

– Why do we not see “$SHELL” printed?

● If you aren't using bash, you will need to run the following:

/bin/bash --login

A bit more about variables

● Variables are not strictly typed.

● By default, variables are treated as strings.

a=1

echo $a

1

a=$a+2

echo $a

1+2

A bit more about variables (2)

● We can tell bash that it should treat our variable like an integer.

a=1

echo $a

1

a=$((a+2))

echo $a

3

Quotes, and the for loop

● Using the “for var in list” syntax.

– var is the name of the iterating variable

– list is a whitespace delimited list of text elements.

for file in `ls`; do

echo 'file name: $file'

done

Quotes, and the for loop

● Using the “for var in list” syntax.

– var is the name of the iterating variable

– list is a whitespace delimited list of text elements.

for file in `ls`; do

echo 'file name: $file'

done

● Uh-oh, this didn't work. What went wrong?

Quotes in bash

● There are 3 types of quote pairs:

– The double, forward quote "

– The single, forward quote '

– The single, back quote `

● Back quotes tell bash to execute whatever lies inside as if it
were typed in the command prompt directly, and paste the
output where the back quotes were.

● In general, single and double quotes are interchangeable in
bash, and are used for grouping strings.

– Single quotes don't permit variable evaluation, while double quotes
do

Redirection

● Most of the utilities you will encounter operate on text streams.

– stdin: Standard input

– stdout: Standard output

– stderr: Standard error (second output stream)

● By default, your typing is standard in, and standard out/err is
what is displayed on the screen.

● But, what if we want to read/write a file instead?

● What about hooking the standard out of one program to the
standard in of another?

Redirection (2)

● cat is a utility which simply reads from stdin and writes to
stdout.

cat < readme.txt

echo "Here's some text" > text.txt

● Bash provides us with several stream redirection operators

– < pulls data from a file and puts it on stdin of a program

– > pulls data from stdout of a program, and puts it in a file

– | (pipe) pulls data from stdout of the left hand side program, and
puts it on stdin of the right hand side program

cat < readme.txt | cat > readme_copy.txt

Redirection (3)

● In the previous example, | (pipe) is pretty useless, however, it
will become much more useful as we learn some of the other
UNIX utilities.

● There are a lot more redirection operators that have varying
degrees of usefulness.

● What happens to readme_copy.txt if you run again:

cat < readme.txt > readme_copy.txt

● What happens if you instead run:

cat < readme.txt >> readme_copy.txt

Redirection (4)

● >> - pulls data from standard out and appends it to the end of a
file

● 2> – 2 is standard error, this redirects standard error to a file,
instead of standard out.

● 2>&1 - & is a stream concatenate. This is a special operator
that redirects the standard error of a program to the standard
out.

● > /dev/null – This redirects the standard output to a character
device sink that goes nowhere. Useful if you don't want to see
the output of your program

Some other UNIX commands:

● Bash is great, but there is only so much that can be done with
built in functions

● Let's look at some other powerful commands

● grep

● awk

● sed

● bc

Grep

● Stands for “Globally search a Regular Expression and Print”

● Basically, we use this as a search filter, printing if the string
we're searching for (an argument to grep) is found in the
standard input to grep.

● We have the option to use regular expressions, but looking for
plain text works just fine too.

ls | grep txt

ps aux | grep uniqueID

Awk

● Named for it's creators.

● Awk is a text processing and scripting language on its own.

– Awk operates on a line-by-line basis.

– Each line will be treated as whitespace delimited fields

● For simplicity, we will only be learning about print/printf.

Awk (2)

● Let's look at the data fields from bash's list command:

ls -lh

 -rw-rw-r-- 1 steve steve 57K Mar 12 23:02 album.html

● There appear to be nine fields, which awk will number as $1
through $9 in our script.

Awk (2)

● Let's look at the data fields from bash's list command:

ls -lh

 -rw-rw-r-- 1 steve steve 57K Mar 12 23:02 album.html

● There appear to be nine fields, which awk will number as $1
through $9 in our script.

● We want to print just the name of the file, and the size.

– The following awk program should do the trick

'{ print $9 " " $5; }'

● Let's pipe the output from ls to the awk program:

ls -lh | awk '{ print $9 " " $5; }'

Awk (3)

● That output is alright, but I think we can do better.

● Let's use awk with a formatter to make cleaner code, and
prettier output

ls -lh | awk '{ printf "File %s is %s
bytes.\n", $9, $5; }'

● Notice, we have an anomaly on the very first line. This is
fixable, but requires a new command

Tail & Awk (4)

● Tail will help us select which lines get output.

ls -lh | tail -n +2 | awk '{ printf "File %s is
%s bytes.\n", $9, $5; }'

● By piping through tail with the “-n +2” argument, we are telling
tail we want only lines beginning at line 2 and later.

– If we instead asked for “-n 2”, we would get just the last 2 lines.

● You might also look up head, which is the complement of tail.

Sed

● Sed stands for Stream EDitor.

● Like grep, we can use regular expressions with it.

● This adds complexity, so I will try to keep things as minimalistic
as possible, although they will still look awful.

● For 99% of the sed scripts I write, I am only using it for
substituting one string for another.

cat < example.c

Sed (2)

● Let's look at example.c. It prints my name, but what if we want it
to print yours?

● Can we do this “find & replace” without opening a heavy weight
text editor?

sed -i 's/Steve/Your Name/' example.c

● Take a look and make sure it worked.

Sed (3)

● Remember all those fancy comments from example.c?

● Those are c++ style comments, which have been accepted into
the c99/c11 standard.

● But what if we don't have a c99 compiler?

● Try to compile the code:

gcc -ansi example.c

● Look at all the errors... but what's wrong?

Sed (4)

● '//' has no meaning to an old c89/K&R compiler. If you want
comments, they're gonna be c-style /* and */ pairs.

● Surely you can't expect me to change every line from // to /* */?

● We want the stuff after // to go between the /* and */ pair now.

● This isn't a simple find and replace operation like last time.

Sed (5) and RegEx

● We can use sed, of course!

● We need to introduce two confusing concepts though:

– The Regular Expression

– The match/backreference

sed -i 's|//\(.*\)|/* \1 */|' example.c

Sed (6) and RegEx

● We can use sed, of course!

● We need to introduce two confusing concepts though:

– The Regular Expression

– The match/backreference

sed -i 's|//\(.*\)|/* \1 */|' example.c

– s – This is the command, substitute

– | - This is the delimiter, since we have '/' as a character we're
searching for

– .* - This is the regular expression, means everything, repeated

– \(, \) and \1 – These set up the match in part 2, and store it for later
use as the backreference in part 3

Sed (6), gcc and program execution

● Let's try to compile the fixed version

gcc -ansi example.c

● And execute:

./a.out

BC (basic calculator)

● Bash can do some basic math with integers.

● If we want floating-point, we need a new tool.

● Let's start an interactive session with bc and load the standard
math library.

bc -l

● Let's ask it a simple question:

4*a(1)

BC (2)

● Look familiar?

● So, what did we do?

BC (3)

● The function a() is taking the arc-tangent of the number in
parentheses.

(n, n)

(0, 0)

π
4
rad

BC (4)

● Other functions in the BC math library

– a(n) – arctangent

– s(n) – sine

– c(n) – cosine

– l(n) – natural logarithm

– e(n) – exponential

– sqrt(n) – square root

– j(n,x) – Bessel function order n of x

The shell script

● We can take everything we do interactively with bash, and put it
into a convenient, executable file, a script.

● Let's try something simple, print your name:

● Open a text editor:

nano name.sh

● Add these two lines:

#!/bin/bash

echo "My name is Your_Name"

● Save and exit.

The shell script (2)

● First, we must make the new script executable.

chmod +x name.sh

● Now, we can run it just like the c program.

./name.sh

The shell script (3)

● We can also pass command line parameters to shell scripts

● These show up as special variables inside the script

– $# is the count of command line parameters, think of it like argc in a
c program

– $1...$n are the parameters, think of them like argv[1] through
argv[n] in a c program.

– $@ is the entire list of $1...$n

● Try changing the second line in your script to:

echo "My name is $1"

● Now, you should run it with an argument:

./name.sh Steve

Run time performance

● Execution time is an important measure of a program's
performance. To get this statistic, we can use the bash time
function.

● We will be using the factors.c program for run time analysis.

gcc -ansi factors.c

● Let's examine the components of runtime.sh

runtime.sh

for TRY in {1..5}; do

 { time ./a.out $1 > /dev/null; } 2>&1 | \

 grep real | \

 awk '{ print $2; }' |

 sed 's/\(.*\)m\(.*\)s/ \1 * 60 + \2 /' | \

 bc >> times.txt

done

runtime.sh

TOTAL=0

TRIES=0

for TIME in `cat < times.txt`; do

 TOTAL=`echo "$TOTAL+$TIME" | bc -l`

 TRIES=$((TRIES+1))

done

echo "The average run time is " `echo "$TOTAL/
$TRIES" | bc -l`

Run time performance (2)

● Let's test this new script.

● Check that the script is executable:

ls -l runtime.sh

 -rwxrwxr-x 1 steve steve 1222 Mar 13 15:35 runtime.sh

● If not, set the executable bit:

chmod +x runtime.sh

● And try it out with a big numer

./runtime.sh 12345678

 The average run time is .2578

References

● http://www.tldp.org/LDP/abs/html/

● http://www.grymoire.com/Unix/Sed.html

● http://www.tutorialspoint.com/unix/unix-regular-expressions.htm

● http://www.gnu.org/software/sed/manual/sed.html

● http://www.grymoire.com/Unix/Awk.html

Other important
languages/editors/commands

● Perl

● Python

● CMake

● GNU Make

● emacs

● vim/ed

● cut/paste/join

● sort

● date

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

