
  

Introduction to the Bourne Again 
SHell (bash)



  

Overview

● Bash basics, variables, looping and redirection.

● grep (text searching)

● awk (text processing)

● sed (text processing/stream editor)

● bc (CLI calculator)

● Shell scripts

● A real life example.

● Other languages of interest



  

Some required files

wget http://ceclnx01.cec.miamioh.edu/~taylors6/acm_bash_demo.tar.xz

tar xf acm_bash_demo.tar.xz

cd acm_bash_demo



  

bash

● Let's first make sure everyone is using bash.

echo $SHELL

/bin/bash

● What happened here?

– The bash built-in command echo takes input from it's argument 
list, and prints it to standard-out.

– Why do we not see “$SHELL” printed?

● If you aren't using bash, you will need to run the following:

/bin/bash --login



  

A bit more about variables

● Variables are not strictly typed.

● By default, variables are treated as strings.

a=1

echo $a

1

a=$a+2

echo $a

1+2



  

A bit more about variables (2)

● We can tell bash that it should treat our variable like an integer.

a=1

echo $a

1

a=$((a+2))

echo $a

3



  

Quotes, and the for loop

● Using the “for var in list” syntax.

– var is the name of the iterating variable

– list is a whitespace delimited list of text elements. 

for file in `ls`; do

echo 'file name: $file'

done 



  

Quotes, and the for loop

● Using the “for var in list” syntax.

– var is the name of the iterating variable

– list is a whitespace delimited list of text elements. 

for file in `ls`; do

echo 'file name: $file'

done 

● Uh-oh, this didn't work. What went wrong?



  

Quotes in bash

● There are 3 types of quote pairs:

– The double, forward quote "

– The single, forward quote '

– The single, back quote `

● Back quotes tell bash to execute whatever lies inside as if it 
were typed in the command prompt directly, and paste the 
output where the back quotes were.

● In general, single and double quotes are interchangeable in 
bash, and are used for grouping strings.

– Single quotes don't permit variable evaluation, while double quotes 
do



  

Redirection

● Most of the utilities you will encounter operate on text streams.

– stdin: Standard input

– stdout: Standard output

– stderr: Standard error (second output stream)

● By default, your typing is standard in, and standard out/err is 
what is displayed on the screen.

● But, what if we want to read/write a file instead?

● What about hooking the standard out of one program to the 
standard in of another?



  

Redirection (2)

● cat is a utility which simply reads from stdin and writes to 
stdout.

cat < readme.txt

echo "Here's some text" > text.txt

● Bash provides us with several stream redirection operators

– < pulls data from a file and puts it on stdin of a program

– > pulls data from stdout of a program, and puts it in a file

– | (pipe) pulls data from stdout of the left hand side program, and 
puts it on stdin of the right hand side program

cat < readme.txt | cat > readme_copy.txt



  

Redirection (3)

● In the previous example, | (pipe) is pretty useless, however, it 
will become much more useful as we learn some of the other 
UNIX utilities.

● There are a lot more redirection operators that have varying 
degrees of usefulness. 

● What happens to readme_copy.txt if you run again:

cat < readme.txt > readme_copy.txt

● What happens if you instead run:

cat < readme.txt >> readme_copy.txt



  

Redirection (4)

● >> - pulls data from standard out and appends it to the end of a 
file

● 2> – 2 is standard error, this redirects standard error to a file, 
instead of standard out.

● 2>&1 - & is a stream concatenate. This is a special operator 
that redirects the standard error of a program to the standard 
out.

● > /dev/null – This redirects the standard output to a character 
device sink that goes nowhere. Useful if you don't want to see 
the output of your program



  

Some other UNIX commands:

● Bash is great, but there is only so much that can be done with 
built in functions

● Let's look at some other powerful commands 

● grep 

● awk 

● sed 

● bc 



  

Grep

● Stands for “Globally search a Regular Expression and Print”

● Basically, we use this as a search filter, printing if the string 
we're searching for (an argument to grep) is found in the 
standard input to grep.

● We have the option to use regular expressions, but looking for 
plain text works just fine too.

ls | grep txt

ps aux | grep uniqueID



  

Awk

● Named for it's creators.

● Awk is a text processing and scripting language on its own.

– Awk operates on a line-by-line basis.

– Each line will be treated as whitespace delimited fields

● For simplicity, we will only be learning about print/printf.



  

Awk (2)

● Let's look at the data fields from bash's list command:

ls -lh 

   -rw-rw-r-- 1 steve steve  57K Mar 12 23:02 album.html

● There appear to be nine fields, which awk will number as $1 
through $9 in our script.



  

Awk (2)

● Let's look at the data fields from bash's list command:

ls -lh 

   -rw-rw-r-- 1 steve steve  57K Mar 12 23:02 album.html

● There appear to be nine fields, which awk will number as $1 
through $9 in our script.

● We want to print just the name of the file, and the size.

– The following awk program should do the trick

'{ print $9 " " $5; }'

● Let's pipe the output from ls to the awk program:

ls -lh | awk '{ print $9 " " $5; }'



  

Awk (3)

● That output is alright, but I think we can do better.

● Let's use awk with a formatter to make cleaner code, and 
prettier output

ls -lh | awk '{ printf "File %s is %s 
bytes.\n", $9, $5; }'

● Notice, we have an anomaly on the very first line. This is 
fixable, but requires a new command



  

Tail & Awk (4)

● Tail will help us select which lines get output.

ls -lh | tail -n +2 | awk '{ printf "File %s is 
%s bytes.\n", $9, $5; }'

● By piping through tail with the “-n +2” argument, we are telling 
tail we want only lines beginning at line 2 and later.

– If we instead asked for “-n 2”, we would get just the last 2 lines.

● You might also look up head, which is the complement of tail.



  

Sed

● Sed stands for Stream EDitor. 

● Like grep, we can use regular expressions with it.

● This adds complexity, so I will try to keep things as minimalistic 
as possible, although they will still look awful.

● For 99% of the sed scripts I write, I am only using it for 
substituting one string for another.

cat < example.c



  

Sed (2)

● Let's look at example.c. It prints my name, but what if we want it 
to print yours?

● Can we do this “find & replace” without opening a heavy weight 
text editor?

sed -i 's/Steve/Your Name/' example.c

● Take a look and make sure it worked. 



  

Sed (3)

● Remember all those fancy comments from example.c?

● Those are c++ style comments, which have been accepted into 
the c99/c11 standard.

● But what if we don't have a c99 compiler?

● Try to compile the code:

gcc -ansi example.c

● Look at all the errors... but what's wrong?



  

Sed (4)

● '//' has no meaning to an old c89/K&R compiler. If you want 
comments, they're gonna be c-style /* and */ pairs.

● Surely you can't expect me to change every line from // to /* */?

● We want the stuff after // to go between the /* and */ pair now.

● This isn't a simple find and replace operation like last time.



  

Sed (5) and RegEx

● We can use sed, of course!

● We need to introduce two confusing concepts though:

– The Regular Expression

– The match/backreference

sed -i 's|//\(.*\)|/* \1 */|' example.c



  

Sed (6) and RegEx

● We can use sed, of course!

● We need to introduce two confusing concepts though:

– The Regular Expression

– The match/backreference

sed -i 's|//\(.*\)|/* \1 */|' example.c

– s – This is the command, substitute

– | - This is the delimiter, since we have '/' as a character we're 
searching for

– .* - This is the regular expression, means everything, repeated

– \(, \) and \1 – These set up the match in part 2, and store it for later 
use as the backreference in part 3



  

Sed (6), gcc and program execution

● Let's try to compile the fixed version

gcc -ansi example.c

● And execute:

./a.out



  

BC (basic calculator)

● Bash can do some basic math with integers.

● If we want floating-point, we need a new tool.

● Let's start an interactive session with bc and load the standard 
math library.

bc -l

● Let's ask it a simple question:

4*a(1)



  

BC (2)

● Look familiar?

● So, what did we do?



  

BC (3)

● The function a() is taking the arc-tangent of the number in 
parentheses.

(n, n)

(0, 0)

π
4
rad



  

BC (4)

● Other functions in the BC math library

– a(n) – arctangent

– s(n) – sine

– c(n) – cosine

– l(n) – natural logarithm

– e(n) – exponential 

– sqrt(n) – square root

– j(n,x) – Bessel function order n of x



  

The shell script

● We can take everything we do interactively with bash, and put it 
into a convenient, executable file, a script.

● Let's try something simple, print your name:

● Open a text editor:

nano name.sh

● Add these two lines:

#!/bin/bash

echo "My name is Your_Name"

● Save and exit.



  

The shell script (2)

● First, we must make the new script executable.

chmod +x name.sh

● Now, we can run it just like the c program.

./name.sh



  

The shell script (3)

● We can also pass command line parameters to shell scripts

● These show up as special variables inside the script

– $# is the count of command line parameters, think of it like argc in a 
c program

– $1...$n are the parameters, think of them like argv[1] through 
argv[n] in a c program.

– $@ is the entire list of $1...$n

● Try changing the second line in your script to:

echo "My name is $1"

● Now, you should run it with an argument:

./name.sh Steve



  

Run time performance

● Execution time is an important measure of a program's 
performance. To get this statistic, we can use the bash time 
function.

● We will be using the factors.c program for run time analysis.

gcc -ansi factors.c

● Let's examine the components of runtime.sh



  

runtime.sh

for TRY in {1..5}; do

  { time ./a.out $1 > /dev/null; } 2>&1 | \

    grep real | \

    awk '{ print $2; }' |

    sed 's/\(.*\)m\(.*\)s/ \1 * 60 + \2 /' | \

    bc >> times.txt

done



  

runtime.sh

TOTAL=0

TRIES=0

for TIME in `cat < times.txt`; do

  TOTAL=`echo "$TOTAL+$TIME" | bc -l`

  TRIES=$((TRIES+1))

done

echo "The average run time is " `echo "$TOTAL/
$TRIES" | bc -l`



  

Run time performance (2)

● Let's test this new script.

● Check that the script is executable:

ls -l runtime.sh

   -rwxrwxr-x 1 steve steve 1222 Mar 13 15:35 runtime.sh

● If not, set the executable bit:

chmod +x runtime.sh

● And try it out with a big numer

./runtime.sh 12345678

   The average run time is  .2578



  

References
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● http://www.grymoire.com/Unix/Awk.html



  

Other important 
languages/editors/commands

● Perl

● Python

● CMake 

● GNU Make

● emacs

● vim/ed

● cut/paste/join

● sort

● date 
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